Sunday, 29 October 2017

Exponentiell Gewogenes Gleit Durchschnitt Diagramm Beispiel


Der exponentiell gewichtete Moving Average (EWMA) ist eine Statistik zur Überwachung des Prozesses, der die Daten in einer Weise mittelt, die den Daten weniger und weniger Gewicht verleiht, da sie zeitlich weiter entfernt werden. Vergleich der Shewhart-Kontrollkarte und der EWMA-Kontrolltafeltechniken Für die Shewhart-Chartsteuerungstechnik hängt die Entscheidung über den Stand der Kontrolle des Prozesses zu jeder Zeit (t) allein von der aktuellsten Messung aus dem Prozess ab und natürlich, Der Grad der Richtigkeit der Schätzungen der Kontrollgrenzen aus historischen Daten. Für die EWMA-Steuerungstechnik hängt die Entscheidung von der EWMA-Statistik ab, die ein exponentiell gewichteter Durchschnitt aller bisherigen Daten einschließlich der letzten Messung ist. Durch die Wahl des Gewichtungsfaktors (Lambda) kann das EWMA-Steuerungsverfahren auf eine kleine oder allmähliche Drift im Prozess empfindlich gemacht werden, während das Shewhart-Steuerungsverfahren nur dann reagieren kann, wenn der letzte Datenpunkt außerhalb einer Kontrollgrenze liegt. Definition von EWMA Die Statistik, die berechnet wird, ist: mbox t lambda Yt (1-lambda) mbox ,,, mbox ,,, t 1,, 2, ldots ,, n. Wo (mbox 0) ist der Mittelwert der historischen Daten (Ziel) (Yt) ist die Beobachtung zum Zeitpunkt (t) (n) ist die Anzahl der zu überwachenden Beobachtungen einschließlich (mbox 0) (0 Interpretation der EWMA-Kontrollkarte Die rot Punkte sind die Rohdaten, die die gezackte Linie ist die EWMA-Statistik im Laufe der Zeit. Die Grafik sagt uns, dass der Prozess in der Steuerung ist, weil alle (mbox t) zwischen den Kontrollgrenzen liegen, aber es scheint ein Trend nach oben für die letzten 5 zu sein Perioden. Mehrere Änderungen werden erst im Laufe der Zeit offensichtlich. Leider braucht es Zeit für die Muster in den Daten zu entstehen, weil einzelne Verletzungen der Kontrollgrenzen nicht unbedingt auf eine permanente Verschiebung des Prozesses hinweisen. Das Shewhart-Kontrolldiagramm ist nicht mächtig für die Erkennung Kleine Änderungen, sagen wir in der Reihenfolge von höchstens einer Standardabweichung, was für die auf der vorherigen Seite gezeigten Kalibrierdaten der Fall zu sein scheint. Das EWMA (exponentiell gewichtete gleitende Durchschnitt) Kontrolldiagramm ist für diesen Zweck besser geeignet Statistik auf dem Kilogramm-Niveau Der exponentiell gewichtete gleitende Durchschnitt (EWMA) ist eine Statistik zur Überwachung des Prozesses, der die Daten in einer Weise vermittelt, die den Daten weniger und weniger Gewicht verleiht, da sie zeitlich von der aktuellen Messung weiter entfernt werden. Die EWMA-Statistik zum Zeitpunkt t wird rekursiv aus einzelnen Datenpunkten berechnet, die rechtzeitig zu Y1, Y2, ldots, Yt geordnet sind, wobei die erste EWMA-Statistik der Durchschnitt der historischen Daten ist. EWMA lambda Yt (1-lambda) EWMA Steuermechanismus für EWMA Das EWMA-Kontrollschema kann durch die Wahl des Gewichtungsfaktors (Lambda) empfindlich auf kleine Änderungen oder eine allmähliche Abweichung des Prozesses gemacht werden. Ein Gewichtungsfaktor zwischen 0,2 - 0,3 wurde zu diesem Zweck vorgeschlagen (Hunter), und 0,15 ist eine weitere beliebte Wahl. Grenzwerte für das Kontrollschema Die Ziel - oder Mittellinie für das Kontrolldiagramm ist der Durchschnitt der historischen Daten. Die obere (UCL) und untere (LCL) Grenzwerte sind UCL EWMA k sqrt LCL EWMA - k sqrt wobei s die Standardabweichung der historischen Daten ist, die Funktion unter dem Radikal ist eine gute Annäherung an die Komponente der Standardabweichung des EWMA Statistik, die eine Funktion der Zeit ist und k der multiplikative Faktor ist. In der gleichen Weise wie für das Shewhart-Kontrollschema definiert, das üblicherweise als 3 bezeichnet wird. Beispiel für das EWMA-Diagramm zur Überprüfung von Standarddaten für Kilogramm-Kalibrierungen, die mehrere Verletzungen der Kontrollgrenzen für die EWMA-Statistik anzeigen. Ziel (Durchschnitt) und Prozessstandard Abweichung wird aus den vor 1985 entnommenen Prüfstandarddaten berechnet. Die Berechnung der EWMA-Statistik beginnt mit den zu Beginn des Jahres 1985 aufgenommenen Daten. In der nachfolgenden Kontrollkarte sind die Steuerdaten nach 1985 grün dargestellt und die EWMA-Statistik Werden als schwarze Punkte dargestellt, die den Rohdaten überlagert sind. Die Regelgrenzen werden nach der obigen Gleichung berechnet, wobei die Prozessstandardabweichung, s 0,03065 mg und k 3 ist. Die EWMA-Statistiken und nicht die Rohdaten sind für die Suche nach Außerkontrollsignalen von Interesse. Da die EWMA-Statistik ein gewichteter Durchschnitt ist, hat sie eine kleinere Standardabweichung als eine einzige Steuerungsmessung, und daher sind die EWMA-Regelgrenzen schmaler als die Grenzwerte für ein Shewhart-Kontrollschema. Das EWMA-Kontrollschema für Massenkalibrierungen kann sowohl mit dem Dataplot-Code als auch mit dem R-Code erzeugt werden. Interpretation des Kontrolldiagramms Das EWMA-Kontrollschema zeigt viele Verletzungen der Regelgrenzen ab etwa dem Mittelpunkt von 1986. Dieses Muster ergibt sich, weil sich der Prozeßdurchschnitt um eine Standardabweichung tatsächlich verschoben hat und das EWMA-Kontrolldiagramm für kleine empfindlich ist Changes. Exploring Die exponentiell gewichtete Moving Average Volatilität ist das häufigste Maß an Risiko, aber es kommt in mehreren Geschmacksrichtungen. In einem früheren Artikel haben wir gezeigt, wie man einfache historische Volatilität berechnet. (Um diesen Artikel zu lesen, siehe Volatilität verwenden, um zukünftiges Risiko zu beurteilen.) Wir haben Googles aktuelle Aktienkursdaten verwendet, um die tägliche Volatilität auf der Grundlage von 30 Tagen Lagerbestand zu berechnen. In diesem Artikel werden wir die einfache Volatilität verbessern und den exponentiell gewichteten gleitenden Durchschnitt (EWMA) diskutieren. Historische Vs. Implizite Volatilität Zuerst können wir diese Metrik in ein bisschen Perspektive bringen. Es gibt zwei breite Ansätze: historische und implizite (oder implizite) Volatilität. Der historische Ansatz geht davon aus, dass Vergangenheit Prolog ist, messen wir die Geschichte in der Hoffnung, dass es prädiktiv ist. Implizite Volatilität hingegen ignoriert die Geschichte, die sie für die Volatilität der Marktpreise löst. Es hofft, dass der Markt am besten weiß und dass der Marktpreis, auch wenn implizit, eine Konsensschätzung der Volatilität enthält. (Für verwandte Lesung siehe die Verwendungen und Grenzen der Volatilität.) Wenn wir uns nur auf die drei historischen Ansätze konzentrieren (links oben), haben sie zwei Schritte gemeinsam: Berechnen Sie die Reihe der periodischen Renditen Bewerben Sie ein Gewichtungsschema Zuerst haben wir Berechnen Sie die periodische Rückkehr. Das ist typischerweise eine Reihe von täglichen Renditen, bei denen jede Rückkehr in kontinuierlich zusammengesetzten Begriffen ausgedrückt wird. Für jeden Tag nehmen wir das natürliche Protokoll des Verhältnisses der Aktienkurse (d. h. der Preis heute geteilt durch den Preis gestern und so weiter). Dies führt zu einer Reihe von täglichen Renditen, von u i zu u i-m. Je nachdem wie viele Tage (m Tage) wir messen. Das bringt uns zum zweiten Schritt: Hier unterscheiden sich die drei Ansätze. In dem vorherigen Artikel (mit Volatility To Gauge Future Risk), haben wir gezeigt, dass unter ein paar akzeptablen Vereinfachungen, die einfache Varianz ist der Durchschnitt der quadrierten Renditen: Beachten Sie, dass dies summiert jede der periodischen Renditen, dann teilt diese Summe durch die Anzahl der Tage oder Beobachtungen (m). Also, es ist wirklich nur ein Durchschnitt der quadratischen periodischen Rückkehr. Setzen Sie einen anderen Weg, jede quadratische Rückkehr wird ein gleiches Gewicht gegeben. Wenn also Alpha (a) ein Gewichtungsfaktor ist (speziell 1 m), dann sieht eine einfache Varianz so aus: Die EWMA verbessert sich auf einfache Abweichung Die Schwäche dieses Ansatzes ist, dass alle Renditen das gleiche Gewicht verdienen. Gestern (sehr neuere) Rückkehr hat keinen Einfluss mehr auf die Varianz als die letzten Monate zurück. Dieses Problem wird durch die Verwendung des exponentiell gewichteten gleitenden Durchschnitts (EWMA) behoben, bei dem neuere Renditen ein größeres Gewicht auf die Varianz haben. Der exponentiell gewichtete gleitende Durchschnitt (EWMA) führt Lambda ein. Der als Glättungsparameter bezeichnet wird. Lambda muss kleiner als eins sein. Unter dieser Bedingung wird anstelle von gleichen Gewichten jede quadrierte Rendite mit einem Multiplikator wie folgt gewichtet: Zum Beispiel neigt RiskMetrics TM, ein Finanzrisikomanagement-Unternehmen, dazu, ein Lambda von 0,94 oder 94 zu verwenden. In diesem Fall ist das erste ( (1 - 0,94) (94) 0 6. Die nächste quadratische Rückkehr ist einfach ein Lambda-Vielfaches des vorherigen Gewichts in diesem Fall 6 multipliziert mit 94 5,64. Und das dritte vorherige Tagegewicht ist gleich (1-0,94) (0,94) 2 5,30. Das ist die Bedeutung von Exponential in EWMA: jedes Gewicht ist ein konstanter Multiplikator (d. h. Lambda, der kleiner als eins sein muss) des vorherigen Tagegewichts. Dies stellt eine Varianz sicher, die gewichtet oder voreingenommen auf neuere Daten ist. (Um mehr zu erfahren, schau dir das Excel-Arbeitsblatt für Googles-Volatilität an.) Der Unterschied zwischen einfacher Volatilität und EWMA für Google ist unten dargestellt. Die einfache Volatilität wirkt effektiv jede periodische Rendite um 0,196, wie in Spalte O gezeigt (wir hatten zwei Jahre täglich Kursdaten, das sind 509 tägliche Renditen und 1509 0,196). Aber beachten Sie, dass Spalte P ein Gewicht von 6, dann 5.64, dann 5.3 und so weiter zuteilt. Das ist der einzige Unterschied zwischen einfacher Varianz und EWMA. Denken Sie daran: Nachdem wir die ganze Serie (in Spalte Q) zusammengefasst haben, haben wir die Varianz, die das Quadrat der Standardabweichung ist. Wenn wir Volatilität wollen, müssen wir uns daran erinnern, die Quadratwurzel dieser Varianz zu nehmen. Was ist der Unterschied in der täglichen Volatilität zwischen der Varianz und EWMA im Googles-Fall Sein signifikant: Die einfache Varianz gab uns eine tägliche Volatilität von 2,4, aber die EWMA gab eine tägliche Volatilität von nur 1,4 (siehe die Kalkulationstabelle für Details). Anscheinend hat sich die Googles-Volatilität in jüngster Zeit niedergelassen, eine einfache Varianz könnte künstlich hoch sein. Heutige Varianz ist eine Funktion von Pior Days Variance Youll bemerken wir brauchten, um eine lange Reihe von exponentiell abnehmenden Gewichten zu berechnen. Wir werden die Mathematik hier nicht machen, aber eines der besten Features der EWMA ist, dass die ganze Serie bequem auf eine rekursive Formel reduziert: Rekursive bedeutet, dass heutige Varianzreferenzen (d. h. eine Funktion der vorherigen Tagesabweichung) ist. Sie finden diese Formel auch in der Kalkulationstabelle, und sie erzeugt genau das gleiche Ergebnis wie die Langzeitberechnung Es heißt: Die heutige Varianz (unter EWMA) ist gleichbedeutend mit der vulkanischen Varianz (gewichtet durch Lambda) plus gestern quadrierte Rückkehr (gewogen von einem Minus Lambda). Beachten Sie, wie wir nur zwei Begriffe zusammenfügen: gestern gewichtete Varianz und gestern gewichtet, quadratische Rückkehr. Dennoch ist Lambda unser Glättungsparameter. Ein höheres Lambda (z. B. RiskMetrics 94) zeigt einen langsamen Abfall in der Serie an - in relativer Hinsicht werden wir mehr Datenpunkte in der Serie haben und sie werden langsamer abfallen. Auf der anderen Seite, wenn wir das Lambda reduzieren, zeigen wir einen höheren Zerfall an: die Gewichte fallen schneller ab, und als direkte Folge des schnellen Zerfalls werden weniger Datenpunkte verwendet. (In der Kalkulationstabelle ist Lambda ein Eingang, also kannst du mit seiner Empfindlichkeit experimentieren). Zusammenfassung Volatilität ist die momentane Standardabweichung eines Bestandes und die häufigste Risikometrität. Es ist auch die Quadratwurzel der Varianz. Wir können die Abweichung historisch oder implizit (implizite Volatilität) messen. Wenn man historisch misst, ist die einfachste Methode eine einfache Varianz. Aber die Schwäche mit einfacher Abweichung ist, dass alle Renditen das gleiche Gewicht bekommen. So stehen wir vor einem klassischen Kompromiss: Wir wollen immer mehr Daten, aber je mehr Daten wir haben, desto mehr wird unsere Berechnung durch entfernte (weniger relevante) Daten verdünnt. Der exponentiell gewichtete gleitende Durchschnitt (EWMA) verbessert die einfache Varianz durch die Zuordnung von Gewichten zu den periodischen Renditen. Auf diese Weise können wir beide eine große Stichprobengröße verwenden, aber auch ein größeres Gewicht auf neuere Renditen geben. (Um ein Film Tutorial zu diesem Thema zu sehen, besuchen Sie die Bionic Turtle.)

No comments:

Post a Comment